Ectopic Expression of O Antigen in Bordetella pertussis by a Novel Genomic Integration System
نویسندگان
چکیده
We describe a novel genome integration system that enables the introduction of DNA fragments as large as 50 kbp into the chromosomes of recipient bacteria. This system, named BPI, comprises a bacterial artificial chromosome vector and phage-derived gene integration machinery. We introduced the wbm locus of Bordetella bronchiseptica, which is required for O antigen biosynthesis, into the chromosome of B. pertussis, which intrinsically lacks O antigen, using the BPI system. After the introduction of the wbm locus, B. pertussis presented an additional substance in the lipooligosaccharide fraction that was specifically recognized by the anti-B. bronchiseptica antibody but not the anti-B. pertussis antibody, indicating that B. pertussis expressed O antigen corresponding to that of B. bronchiseptica. O antigen-expressing B. pertussis was less sensitive to the bactericidal effects of serum and polymyxin B than the isogenic parental strain. In addition, an in vivo competitive infection assay showed that O antigen-expressing B. pertussis dominantly colonized the mouse respiratory tract over the parental strain. These results indicate that the BPI system provides a means to alter the phenotypes of bacteria by introducing large exogenous DNA fragments. IMPORTANCE Some bacterial phenotypes emerge through the cooperative functions of a number of genes residing within a large genetic locus. To transfer the phenotype of one bacterium to another, a means to introduce the large genetic locus into the recipient bacterium is needed. Therefore, we developed a novel system by combining the advantages of a bacterial artificial chromosome vector and phage-derived gene integration machinery. In this study, we succeeded for the first time in introducing a gene locus involved in O antigen biosynthesis of Bordetella bronchiseptica into the chromosome of B. pertussis, which intrinsically lacks O antigen, and using this system we analyzed phenotypic alterations in the resultant mutant strain of B. pertussis. The present results demonstrate that this system successfully accomplished the above-described purpose. We consider this system to be applicable to a number of bacteria other than Bordetella.
منابع مشابه
Bordetella pertussis acquires resistance to complement-mediated killing in vivo.
In order to initially colonize a host, bacteria must avoid various components of the innate immune system, one of which is complement. The genus Bordetella includes three closely related species that differ in their ability to resist complement-mediated killing. Bordetella parapertussis and Bordetella bronchiseptica resist killing in naïve serum, a characteristic that may aid in efficient respi...
متن کاملExtraction of Outer membrane Vesicles from Vaccinal Strain of Bordetella Pertussis as the First Step of a Vaccine Candidate Study Against Pertussis Infection
Background: Pertussis is still one of the major public health problems. The increase of the disease emerged in recent decades due to the replacement of the reactogenic whole cell vaccine with the safer acellular vaccine and the genetic diversity of the bacterium. As outer membrane vesicles (OMVs) obtained from Bordetella pertussis contains surface immunogenic antigen in its structure, it has an...
متن کاملVNTR9 and VNTR10, two newly-found variable-number tandem repeat loci useful in MLVA genotyping of Bordetella pertussis
Background & Aims: Bordetella pertussis, the causative agent of whooping cough, continues to infect human hosts even in those populations where infants and children are routinely vaccinated. Causes of pertussis epidemiology are not fully identified unless strains of the pathogen are characterized by molecular means. Golbally, Multi Locus Variable Number of Tandem Repeats analysis (MLVA) has pro...
متن کاملRegulation of pertussis toxin and lipopolysaccharide levels of Bordetella pertussis 134 in response to modulators
Whooping cough (pertussis) is a highly contagious disease of the human respiratory tract, which is caused by Bordetella pertussis. Reemerge of pertussis in some highly immunized populations and divergency in gene order among several B. pertussis strains promoted this research to study the change of pertussis toxin (PT) and lipopolysacharide levels in response to the different environments. Th...
متن کاملO antigen protects Bordetella parapertussis from complement.
Bordetella pertussis, a causative agent of whooping cough, expresses BrkA, which confers serum resistance, but the closely related human pathogen that also causes whooping cough, Bordetella parapertussis, does not. Interestingly, B. parapertussis, but not B. pertussis, produces an O antigen, a factor shown in other models to confer serum resistance. Using a murine model of infection, we determi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2018